Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework

Joshua S. Yuan (Energy, Environmental, & Chemical Engineering), 7/22

WashU Affiliated Authors: Joshua S. Yuan (Energy, Environmental, & Chemical Engineering)

Abstract: Chemical pollution threatens human health and ecosystem sustainability. Persistent organic pollutants (POPs) like per- and polyfluoroalkyl substances (PFAS) are expensive to clean up once emitted. Innovative and synergistic strategies are urgently needed, yet process integration and cost-effectiveness remain challenging. An in-situ PFAS remediation system is developed to employ a plant-derived biomimetic nano-framework to achieve highly efficient adsorption and subsequent fungal biotransformation synergistically. The multiple component framework is presented as Renewable Artificial Plant for In-situ Microbial Environmental Remediation (RAPIMER). RAPIMER exhibits high adsorption capacity for the PFAS compounds and diverse adsorption capability toward co-contaminants. Subsequently, RAPIMER provides the substrates and contaminants for in situ bioremediation via fungus Irpex lacteus and promotes PFAS detoxification. RAPIMER arises from cheap lignocellulosic sources, enabling a broader impact on sustainability and a means for low-cost pollutant remediation.

Citation/DOI: Li, J., Li, X., Da, Y. et al. Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework. Nat Commun 13, 4368 (2022). https://doi.org/10.1038/s41467-022-31881-5 DOI: 10.1038/s41467-022-31881-5